USN


15EC52

Fifth Semester B.E. Degree Examination, June/July 2018 Digital Signaf processing
Time: 3 hrs.
Max. Marks: 80

## Note: 1. Answer FIVE full questions, choosing one full question from each module. <br> 2. Use of filter table is not permitted.

## Module- 1

1 a. Compute $N$-point DFT of a sequence $x(n)=\frac{1}{2}+\frac{1}{2} \cos \left(\frac{2 \pi}{N}\left(n-\frac{N}{2}\right)\right)$. (08 Marks)
b. Compute 4 -point circular convolution of the sequences using time domain and frequency domain.
$x(n)=\{2,1,2,1\}$ and $h(n)=\{1,2,3,4\}$
(08 Marks)

## OR

2 a. Obtain the relationship between DFT and z-transform.
(08 Marks)
b. Let $\mathrm{x}(\mathrm{n})$ be a real sequence of length N and its N -point DFT is $\mathrm{X}(\mathrm{K})$, show that
(i) $\mathrm{X}(\mathrm{N}-\mathrm{K})=\mathrm{X}^{*}(\mathrm{~K})$
(ii) $\mathrm{X}(0)$ is real.
(iii) If N is even, then $\mathrm{X}\left(\frac{\mathrm{N}}{2}\right)$ is real.
(08 Marks)

## Module-2

3 a. Let $\mathrm{x}(\mathrm{n})$ be a finite length sequence with $\mathrm{X}(\mathrm{K})=\{10,1-\mathrm{j}, 4,1+\mathrm{j}\}$, using properties of DFT, find the DFT of the followings:
(i) $x_{1}(n)=e^{j \frac{\pi}{2} n} x(n)$
(ii) $x_{2}(n)=\left\{\cos \frac{\pi}{2} n\right\} x(n)$
(08 Marks)
b. Find the response of an LTI system with an impulse response $h(n)=\{3,2,1\}$ for the input $\mathrm{x}(\mathrm{n})=\{2,-1,-1,-2,-3,5,6,-1,2,0,2,1\}$, using overlap add method. Use 8 -point circular convolution.
(08 Marks)
4 a. State and prove the,
(i) Modulation property.
(ii) Circular time shift property.
(08 Marks)
b. Consider a finite duration sequence $x(n)=\{0,1,2,3,4,5\}$
(i) Find the sequence, $y(n)$ with 6 point DFT is $y(K)=W_{2}^{K} X(K)$.
(ii) Determine the sequence $\mathrm{y}(\mathrm{n})$ with 6-point DFT $\mathrm{y}(\mathrm{K})=\operatorname{Real[X(K)].\quad \text {(08Marks)}}$

## Module-3

5 a. Develop the radix - 2 Decimation in frequency FFT algorithm for $\mathrm{N}=8$ and draw the signal flow graph.
( 10 Marks)
b. What is Goertzel algorithm and obtain the direct form - II realization?
(06 Marks)

6 a. Let $x(n)$ be the 8 -point sequence of $x(n)=\left\{\frac{1}{\sqrt{2}}, 1, \frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}},-1, \frac{-1}{\sqrt{2}}, 0\right\}$. Compute the DFT of the sequence using DIT FFT algorithm.
(06 Marks)
b. What is Chirp-Signals and mention the applications of Chirp-Z-transform?
(04 Marks)
c. A designer is having a number of 8 point FFT chips. Show explicitly how he should interconnect three chips in order to compute a 24 -point DFT.
(06 Marks)

## Module-4

7 a. Design a digital low pass Butterworth Filter using bilinear transformation to meet the following specifications:

$$
\begin{aligned}
& -3 \mathrm{~dB} \leq\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right| \leq-1 \mathrm{~dB} \text { for } 0 \leq \omega \leq 0.5 \pi \\
& \left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right| \leq-10 \mathrm{~dB} \text { for } 0.7 \pi \leq \omega \leq \pi
\end{aligned}
$$

(10 Marks)
b. Obtain the parallel form of realization of a system difference equation,
$y(n)=0.75 y(n-1)-0.125 y(n-2)+6 x(n)+7 x(n-1)+x(n-2)$
(06 Marks)

## OR

8 a. Convert the analog filter with system function,
$\mathrm{H}_{2}(\mathrm{~s})=\frac{\mathrm{s}+0.1}{(\mathrm{~s}+0.1)^{2}+9}$ into a digital IIR filter by means of the impulse invariance method.
(08 Marks)
b. Obtain the DF-I and cascade form of realization of the system function,

$$
\mathrm{H}(\mathrm{z})=\frac{1+\frac{1}{3} z^{-1}}{\left(1-\frac{1}{5} z^{-1}\right)\left(1-\frac{3}{4} z^{-1}+\frac{1}{8} z^{-2}\right)}
$$

(08 Marks)

## Module-5

9 a. Obtain the linear phase realization of FIR filter with impulse response,
$\mathrm{h}(\mathrm{n})=\delta(\mathrm{n})-\frac{1}{2} \delta(\mathrm{n}-1)+\frac{1}{4} \delta(\mathrm{n}-2)+\frac{1}{4} \delta(\mathrm{n}-3)-\frac{1}{2} \delta(\mathrm{n}-4)+\delta(\mathrm{n}-5)$.
(06 Marks)
b. What are the advantages and disadvantages of the window technique for designing FIR filter?
(04 Marks)
c. A low pass filter is to be designed with the following desired frequency response:
$H_{d}\left(e^{j \omega}\right)= \begin{cases}\mathrm{e}^{-\mathrm{j} 2 \omega}, & |\omega|<\frac{\pi}{4} \\ 0, & \frac{\pi}{4}<|\omega|<\pi\end{cases}$
Determine the filter coefficients $h_{d}(n)$ and $h(n)$ if $\omega(n)$ is a rectangular window defined as,
$\omega_{R}(n)=\left\{\begin{array}{ll}1, & 0 \leq n \leq 4 \\ 0, & \text { Otherwise }\end{array}\right.$.
(06 Marks)

## OR

10 a. The desired frequency response of a low pass filter is given by,
$H_{d}\left(e^{j \omega}\right)=\left\{\begin{array}{l}\mathrm{e}^{-\mathrm{j} 3 \omega}, \quad, \omega<\frac{3 \pi}{4} \\ 0, \quad \frac{3 \pi}{4}<|\omega|<\pi\end{array}\right.$. Determine the frequency response of the FIR filter if
Hamming window is used with $\mathrm{N}=7$.
(10 Marks)
b. Realize an FIR filter with impulse response $h(n)$ given by,

$$
\begin{equation*}
h(n)=\left(\frac{1}{2}\right)^{n}[u(n)-u(n-4)] \text { using direct form. } \tag{06Marks}
\end{equation*}
$$

## CBES SCHI



15EC54

Fifth Semester B.E. Degree Examination, June/July 2018 Information Theory and Coding

Time: 3 hrs.
Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

## Module-1

1 a. With neat sketch, explain the block diagram of an information system.
(04 Marks)
b. Define entropy. State various properties of the entropy.
(04 Marks)
c. A code is composed of dots and dashes. Assuming a dash is 3 times as long as a dot and has one-third the probability of occurrence. Calculate:
i) The information in a dot and a dash.
ii) The entropy of dot-dash code.
iii) The average rate of information if a dot lasts for 10 mili seconds and the same time is allowed between symbols.
(08 Marks)

## OR

2 a. Derive an expression for the entropy of $\mathrm{n}^{\text {th }}$ extension of a zero memory source. ( 06 Marks)
b. The first order Markoff model shown in Fig.Q.2(b). Find the state probabilities, entropy of each state and entropy of the source.
( 10 Marks)


Fig.Q.2(b)

## Module-2

3 a. Apply Shannon's binary encoding algorithm to the following set of symbols given in table below. Also obtain code efficiency.
(08 Marks)

| Symbols | A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P | $1 / 8$ | $1 / 16$ | $3 / 16$ | $1 / 4$ | $3 / 8$ |

b. Consider a source $\mathrm{S}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}\right\}$ with probabilities $3 / 4$ and $1 / 4$ respectively. Obtain ShannonFano code for source S and its $2^{\text {nd }}$ extension. Calculate efficiencies for each case. Comment on the result.
(08 Marks)

## OR

4 a. Consider a source with 8 alphabets A to H with respective probabilities of $0.22,020,018$, $015,0.10,0.08,0.05$ and 0.02 . Construct Huffman's code and determine its efficiency.
(10 Marks)
b. With an illustrative example, explain arithmetic coding technique.
(06 Marks)

## Modules

a. Define: i) Input entropy
ii) Output entropy
iii) Equivocation
v) Mutual information with the aid of respective equations.
iv) Joint entropy and

In
b. In a communication system, a transmitter has 3 input symbols $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and receiver also has 3 output symbols $B=\left\{b_{1}, b_{2}, b_{3}\right\}$. The matrix given below shows JPM. ( $\mathbf{0 8}$ Marks)

i) Find missing probabilities $(*)$ in the table.
ii) Find $P\left(\frac{b_{3}}{a_{1}}\right)$ and $P\left(\frac{a_{1}}{b_{3}}\right)$.
c. A transmitter has 5 symbols with probabilities $0.2,0.3,0.2,0.1$ and 0.2 . Given the channel matrix $\mathrm{P}(\mathrm{B} / \mathrm{A})$ as shown below, calculate $\mathrm{H}(\mathrm{B})$ and $\mathrm{H}(\mathrm{A}, \mathrm{B})$.
(04 Marks)

$$
P(B / A)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 / 4 & 3 / 4 & 0 & 0 \\
0 & 1 / 3 & 2 / 3 & 0 \\
0 & 0 & 1 / 3 & 2 / 3 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Fig.Q.5(c)

## OR

6 a. A Gaussian channel has a 10 MHz bandwidth. If $(\mathrm{S} / \mathrm{N})$ ratio is 100 , calculate the channel capacity and the maximum information rate.
(04 Marks)
b. A binary symmetric channel has channel matrix $\mathrm{P}(\mathrm{Y} / \mathrm{X})=\left|\begin{array}{ll}3 / 4 & 1 / 4 \\ 1 / 4 & 3 / 4\end{array}\right|$ with source probabilities of $\mathrm{P}\left(\mathrm{X}_{1}\right)=\frac{2}{3}$ and $\mathrm{P}\left(\mathrm{X}_{2}\right)=\frac{1}{3}$.
i) Determine $\mathrm{H}(\mathrm{X}), \mathrm{H}(\mathrm{Y}), \mathrm{H}(\mathrm{Y} / \mathrm{X})$ and $\mathrm{H}(\mathrm{X}, \mathrm{Y})$.
ii) Find the channel capacity.
(06 Marks)
c. Find the channel capacity of the charnel shown in Fig.Q.6(c) using Muroga's method.
(06 Marks)


Fig.Q.6(c)
2 of 3

## Module-4

7 a. Distinguish between "block codes" and "convolution codes".
(02 Marks)
b. For a systematic $(6,3)$ linear block code, the parity matrix is $P=\left|\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right|$. Find all possible code vectors.
(08 Marks)
c. The parity check bits of a $(8,4)$ block code are generated by $c_{5}=d_{1}+d_{2}+d_{4}$, $c_{6}=d_{1}+d_{2}+d_{3}, c_{7}=d_{1}+d_{3}+d_{4}$ and $c_{8}=d_{2}+d_{3}+d_{4}$ where $d_{1}, d_{2}, d_{3}$ and $d_{4}$ are message bits. Find the generator matrix and parity check matrix for this code.
(06 Marks)

## OR

8 a. A $(7,4)$ cyclic code has the generator polynomial $g(x)=1+x+x^{3}$. Find the code vectors both in systematic and nonsystematic form for the message bits (1001) and (1101).(12 Marks) b. Consider a $(15,11)$ cyclic code generated by $g(x)=1+x+x^{4}$. Device a feed back shift register encoder circuit.
(04 Marks)

## Module-5

9 a. Write a note on BCH codes. (06 Marks)
b. Consider the $(3,1,2)$ convolutional encoder with $\mathrm{g}^{(1)}=(110), \mathrm{g}^{(2)}=(101)$ and $\mathrm{g}^{(3)}=(111)$.
i) Draw the encoder diagram.
ii) Find the generator matrix.
iii) Find the code word for the message sequence (11101).
(10 Marks)

## OR

10 a. For a $(2,1,3)$ convolutional encoder with $\mathrm{g}^{(1)}=(1101), \mathrm{g}^{(2)}=(1011)$, dray the encoder diagram and code tree. Find the encoded output for the message (11101) by traversing the code tree.
(10 Marks)
b. Describe the Viterbi decoding algorithm.

